cs.AI updates on arXiv.org 10月01日
LLM置信度校准:DINCO方法提升模型可靠性
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出DINCO方法,通过让模型在多个自我生成的干扰项上独立表达置信度,并以此校准,有效提升大型语言模型置信度估计的准确性。

arXiv:2509.25532v1 Announce Type: cross Abstract: Calibrated confidence estimates are necessary for large language model (LLM) outputs to be trusted by human users. While LLMs can express their confidence in human-interpretable ways, verbalized LLM-generated confidence scores have empirically been found to be miscalibrated, reporting high confidence on instances with low accuracy and thereby harming trust and safety. We hypothesize that this overconfidence often stems from a given LLM's heightened suggestibility when faced with claims that it encodes little information about; we empirically validate this hypothesis, finding more suggestibility on lower-accuracy claims. Building on this finding, we introduce Distractor-Normalized Coherence (DINCO), which estimates and accounts for an LLM's suggestibility bias by having the model verbalize its confidence independently across several self-generated distractors (i.e. alternative claims), and normalizes by the total verbalized confidence. To further improve calibration, we leverage generator-validator disagreement, augmenting normalized validator confidence with a consistency-based estimate of generator confidence. Here, we frame the popular approach of self-consistency as leveraging coherence across sampled generations, and normalized verbalized confidence as leveraging coherence across validations on incompatible claims, allowing us to integrate these complementary dimensions of coherence into DINCO. Moreover, our analysis shows that DINCO provides less saturated -- and therefore more usable -- confidence estimates, and that further sampling alone cannot close the gap between DINCO and baselines, with DINCO at 10 inference calls outperforming self-consistency at 100.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

大型语言模型 置信度校准 DINCO方法 模型可靠性 干扰项校准
相关文章