cs.AI updates on arXiv.org 10月01日 14:00
P2Es:基于PPG信号生成12导联ECG的创新框架
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出了一种名为P2Es的扩散框架,通过模拟信号扭曲和时空依赖性建模,从PPG信号中生成临床有效的12导联ECG,在12导联ECG重建方面优于基线模型。

arXiv:2509.25480v1 Announce Type: cross Abstract: The 12-lead electrocardiogram (ECG) is the gold standard for cardiovascular monitoring, offering superior diagnostic granularity and specificity compared to photoplethysmography (PPG). However, existing 12-lead ECG systems rely on cumbersome multi-electrode setups, limiting sustained monitoring in ambulatory settings, while current PPG-based methods fail to reconstruct multi-lead ECG due to the absence of inter-lead constraints and insufficient modeling of spatial-temporal dependencies across leads. To bridge this gap, we introduce P2Es, an innovative demographic-aware diffusion framework designed to generate clinically valid 12-lead ECG from PPG signals via three key innovations. Specifically, in the forward process, we introduce frequency-domain blurring followed by temporal noise interference to simulate real-world signal distortions. In the reverse process, we design a temporal multi-scale generation module followed by frequency deblurring. In particular, we leverage KNN-based clustering combined with contrastive learning to assign affinity matrices for the reverse process, enabling demographic-specific ECG translation. Extensive experimental results show that P2Es outperforms baseline models in 12-lead ECG reconstruction.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

ECG PPG 信号处理 医学成像 人工智能
相关文章