cs.AI updates on arXiv.org 10月01日
环境配置自动化:模型调优新策略
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文针对软件工程中环境配置的挑战,提出了一种结合监督学习和强化学习的模型调优新策略,显著提升了自动化环境配置的效果。

arXiv:2509.25455v1 Announce Type: cross Abstract: Environment setup-the process of configuring the system to work with a specific software project-represents a persistent challenge in Software Engineering (SE). Automated environment setup methods could assist developers by providing fully configured environments for arbitrary repositories without manual effort. This also helps SE researchers to scale execution-based benchmarks. However, recent studies reveal that even state-of-the-art Large Language Models (LLMs) achieve limited success in automating this task. To address this limitation, we tune a specialized model for environment setup. We combine supervised fine-tuning for generating correct Bash scripts and Reinforcement Learning with Verifiable Rewards (RLVR) to adapt it to the task of environment setup. On EnvBench-Python, our method enables Qwen3-8B (a model runnable on consumer hardware) to perform on par with larger models-Qwen3-32B and GPT-4o. The training code and model checkpoints are available online: https://github.com/JetBrains-Research/PIPer.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

软件工程 环境配置 模型调优 监督学习 强化学习
相关文章