cs.AI updates on arXiv.org 10月01日
时间序列JEPA:自我监督学习的创新应用
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出时间序列JEPA(TS-JEPA),一种针对时间序列表征学习的自我监督学习架构。通过在潜在空间进行自监督学习,该架构在分类和预测任务上展示出超越现有基线的表现,并表现出在多样任务上的强大性能平衡,为未来时间序列基础模型的发展奠定基础。

arXiv:2509.25449v1 Announce Type: cross Abstract: Self-supervised learning has seen great success recently in unsupervised representation learning, enabling breakthroughs in natural language and image processing. However, these methods often rely on autoregressive and masked modeling, which aim to reproduce masked information in the input, which can be vulnerable to the presence of noise or confounding variables. To address this problem, Joint-Embedding Predictive Architectures (JEPA) has been introduced with the aim to perform self-supervised learning in the latent space. To leverage these advancements in the domain of time series, we introduce Time Series JEPA (TS-JEPA), an architecture specifically adapted for time series representation learning. We validate TS-JEPA on both classification and forecasting, showing that it can match or surpass current state-of-the-art baselines on different standard datasets. Notably, our approach demonstrates a strong performance balance across diverse tasks, indicating its potential as a robust foundation for learning general representations. Thus, this work lays the groundwork for developing future time series foundation models based on Joint Embedding.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

时间序列 自我监督学习 JEPA架构 表征学习 基础模型
相关文章