cs.AI updates on arXiv.org 10月01日
LLM内部几何特性评估文本质量
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文通过内部模型表示的几何特性评估大型语言模型(LLM)生成文本质量,验证了包括最大可解释方差、有效排名、内在维度、MAUVE评分和Schatten范数等指标,发现内在维度和有效排名可作为评估文本自然性和质量的通用标准,无需人工标注数据集,对自动化评估流程具有实际优势。

arXiv:2509.25359v1 Announce Type: cross Abstract: This paper bridges internal and external analysis approaches to large language models (LLMs) by demonstrating that geometric properties of internal model representations serve as reliable proxies for evaluating generated text quality. We validate a set of metrics including Maximum Explainable Variance, Effective Rank, Intrinsic Dimensionality, MAUVE score, and Schatten Norms measured across different layers of LLMs, demonstrating that Intrinsic Dimensionality and Effective Rank can serve as universal assessments of text naturalness and quality. Our key finding reveals that different models consistently rank text from various sources in the same order based on these geometric properties, indicating that these metrics reflect inherent text characteristics rather than model-specific artifacts. This allows a reference-free text quality evaluation that does not require human-annotated datasets, offering practical advantages for automated evaluation pipelines.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

大型语言模型 文本质量评估 几何特性
相关文章