cs.AI updates on arXiv.org 10月01日
LEO-CVAE:基于熵引导的生成过采样方法
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出LEO-CVAE,一种结合条件变分自编码器和局部熵的生成过采样框架,通过计算样本邻域的香农熵来量化不确定性,并在不确定区域强调鲁棒学习,显著提高临床基因组数据集的分类性能。

arXiv:2509.25334v1 Announce Type: cross Abstract: Class imbalance remains a major challenge in machine learning, especially for high-dimensional biomedical data where nonlinear manifold structures dominate. Traditional oversampling methods such as SMOTE rely on local linear interpolation, often producing implausible synthetic samples. Deep generative models like Conditional Variational Autoencoders (CVAEs) better capture nonlinear distributions, but standard variants treat all minority samples equally, neglecting the importance of uncertain, boundary-region examples emphasized by heuristic methods like Borderline-SMOTE and ADASYN. We propose Local Entropy-Guided Oversampling with a CVAE (LEO-CVAE), a generative oversampling framework that explicitly incorporates local uncertainty into both representation learning and data generation. To quantify uncertainty, we compute Shannon entropy over the class distribution in a sample's neighborhood: high entropy indicates greater class overlap, serving as a proxy for uncertainty. LEO-CVAE leverages this signal through two mechanisms: (i) a Local Entropy-Weighted Loss (LEWL) that emphasizes robust learning in uncertain regions, and (ii) an entropy-guided sampling strategy that concentrates generation in these informative, class-overlapping areas. Applied to clinical genomics datasets (ADNI and TCGA lung cancer), LEO-CVAE consistently improves classifier performance, outperforming both traditional oversampling and generative baselines. These results highlight the value of uncertainty-aware generative oversampling for imbalanced learning in domains governed by complex nonlinear structures, such as omics data.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

机器学习 过采样 CVAE 不确定性 生物医学数据
相关文章