cs.AI updates on arXiv.org 10月01日
ClustRecNet:深度学习聚类算法推荐框架
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出ClustRecNet,一种基于深度学习的聚类算法推荐框架,解决无监督学习中的聚类算法选择难题。通过构建包含34,000个合成数据集的数据库,并使用10种流行的聚类算法进行预处理,通过调整兰德指数(ARI)评估聚类结果,训练并评估深度学习模型。实验表明,ClustRecNet在合成和真实数据集上均优于传统聚类有效性指数和现有自动机器学习聚类推荐方法。

arXiv:2509.25289v1 Announce Type: cross Abstract: We introduce ClustRecNet - a novel deep learning (DL)-based recommendation framework for determining the most suitable clustering algorithms for a given dataset, addressing the long-standing challenge of clustering algorithm selection in unsupervised learning. To enable supervised learning in this context, we construct a comprehensive data repository comprising 34,000 synthetic datasets with diverse structural properties. Each of them was processed using 10 popular clustering algorithms. The resulting clusterings were assessed via the Adjusted Rand Index (ARI) to establish ground truth labels, used for training and evaluation of our DL model. The proposed network architecture integrates convolutional, residual, and attention mechanisms to capture both local and global structural patterns from the input data. This design supports end-to-end training to learn compact representations of datasets and enables direct recommendation of the most suitable clustering algorithm, reducing reliance on handcrafted meta-features and traditional Cluster Validity Indices (CVIs). Comprehensive experiments across synthetic and real-world benchmarks demonstrate that our DL model consistently outperforms conventional CVIs (e.g. Silhouette, Calinski-Harabasz, Davies-Bouldin, and Dunn) as well as state-of-the-art AutoML clustering recommendation approaches (e.g. ML2DAC, AutoCluster, and AutoML4Clust). Notably, the proposed model achieves a 0.497 ARI improvement over the Calinski-Harabasz index on synthetic data and a 15.3% ARI gain over the best-performing AutoML approach on real-world data.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

深度学习 聚类算法 推荐框架 无监督学习 自动机器学习
相关文章