cs.AI updates on arXiv.org 10月01日
BEV-VLM:基于VLM的自动驾驶轨迹规划新框架
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出一种新型自动驾驶轨迹规划框架BEV-VLM,利用视觉-语言模型(VLM)结合鸟瞰图(BEV)特征图进行路径规划,通过融合多模态传感器数据与高清地图,生成几何一致且信息丰富的场景描述,实现精确轨迹规划,在nuScenes数据集上实现44.8%的规划准确率提升。

arXiv:2509.25249v1 Announce Type: cross Abstract: This paper introduces BEV-VLM, a novel framework for trajectory planning in autonomous driving that leverages Vision-Language Models (VLMs) with Bird's-Eye View (BEV) feature maps as visual inputs. Unlike conventional approaches that rely solely on raw visual data such as camera images, our method utilizes highly compressed and informative BEV representations, which are generated by fusing multi-modal sensor data (e.g., camera and LiDAR) and aligning them with HD Maps. This unified BEV-HD Map format provides a geometrically consistent and rich scene description, enabling VLMs to perform accurate trajectory planning. Experimental results on the nuScenes dataset demonstrate 44.8% improvements in planning accuracy and complete collision avoidance. Our work highlights that VLMs can effectively interpret processed visual representations like BEV features, expanding their applicability beyond raw images in trajectory planning.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

自动驾驶 轨迹规划 视觉-语言模型 鸟瞰图 nuScenes
相关文章