cs.AI updates on arXiv.org 10月01日
联邦学习在物联网中的优化应用
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出一种名为FedCLF的联邦学习优化方法,用于解决物联网网络中的数据异构性问题,通过引入校准损失和反馈控制机制,提高模型准确率和资源利用效率。

arXiv:2509.25233v1 Announce Type: cross Abstract: Federated Learning (FL) is a distributed machine learning technique that preserves data privacy by sharing only the trained parameters instead of the client data. This makes FL ideal for highly dynamic, heterogeneous, and time-critical applications, in particular, the Internet of Vehicles (IoV) networks. However, FL encounters considerable challenges in such networks owing to the high data and device heterogeneity. To address these challenges, we propose FedCLF, i.e., FL with Calibrated Loss and Feedback control, which introduces calibrated loss as a utility in the participant selection process and a feedback control mechanism to dynamically adjust the sampling frequency of the clients. The envisaged approach (a) enhances the overall model accuracy in case of highly heterogeneous data and (b) optimizes the resource utilization for resource constrained IoV networks, thereby leading to increased efficiency in the FL process. We evaluated FedCLF vis-`a-vis baseline models, i.e., FedAvg, Newt, and Oort, using CIFAR-10 dataset with varying data heterogeneity. Our results depict that FedCLF significantly outperforms the baseline models by up to a 16% improvement in high data heterogeneity-related scenarios with improved efficiency via reduced sampling frequency.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

联邦学习 物联网 数据异构 模型优化 资源利用
相关文章