cs.AI updates on arXiv.org 10月01日
SLS:轻量级优化LLM推理方法
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出了一种名为SLS的轻量级优化方法,通过利用最近logits的谱和熵性质动态调节token分布,有效提高了LLM推理的可靠性,并在数学、编码和科学推理任务中表现出色。

arXiv:2509.25204v1 Announce Type: cross Abstract: Entropy-based inference methods have gained traction for improving the reliability of Large Language Models (LLMs). However, many existing approaches, such as entropy minimization techniques, suffer from high computational overhead and fail to leverage historical token context effectively. To address these limitations, we propose Spectral Logit Sculpting (SLS), a lightweight inference-time optimization method that dynamically modulates token distributions using spectral and entropic properties of recent logits. SLS maintains a sliding buffer of top-K logits, performs on-the-fly Singular Value Decomposition (SVD) to identify dominant spectral directions, and adaptively rescales logits based on both entropy and logit gap statistics--only activating when uncertainty is high. Without updating any model parameters, SLS effectively sharpens the output distribution while preserving contextual consistency. Experimental results on multiple public benchmarks demonstrate that SLS consistently outperforms existing baseline methods, achieving superior accuracy in mathematical, coding, and scientific reasoning tasks.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

LLM推理 Spectral Logit Sculpting 优化方法 数学推理 科学推理
相关文章