cs.AI updates on arXiv.org 10月01日
SlimPack:优化LLM分布式训练框架
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出SlimPack框架,通过细粒度样本分解和不对称分区,有效缓解大型语言模型分布式训练中的数据异质性和资源利用不均问题,实现训练吞吐量提升。

arXiv:2509.26246v1 Announce Type: new Abstract: The efficient distributed training of Large Language Models (LLMs) is severely hampered by the extreme variance in context lengths. This data heterogeneity, amplified by conventional packing strategies and asymmetric forward-backward costs, leads to critical inefficiencies such as cascading workload imbalances and severe hardware underutilization. Existing solutions attempt to mitigate these challenges, but often at the expense of memory or communication efficiency. To address these challenges, we introduce SlimPack, a framework that fundamentally rethinks data packing and scheduling by decomposing samples into fine-grained slices. This slice-level decomposition immediately mitigates critical memory and communication bottlenecks by transforming large, volatile workloads into a stream of smaller, manageable units. This flexibility is then harnessed for our core innovation, Asymmetric Partitioning, which assembles balanced scheduling units uniquely optimized for the different demands of the forward and backward passes. Orchestrated by a two-phase solver and a high-fidelity simulator, SlimPack holistically resolves imbalances across all parallel dimensions. Extensive experiments demonstrate that SlimPack achieves up to a $2.8\times$ training throughput improvement over baselines, breaking the conventional trade-off by delivering both superior balance and high resource efficiency.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

LLM 分布式训练 资源优化 数据异质性 SlimPack
相关文章