cs.AI updates on arXiv.org 10月01日
RAG系统输出评估问卷设计与应用
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文基于Gienapp的效用维度框架,设计了一种针对RAG系统输出的12维度评估问卷,并通过多轮评分和讨论进行迭代优化。研究发现,大语言模型在捕捉指标描述和尺度标签方面表现良好,但在检测文本格式变化方面存在不足,而人类评估者难以严格关注指标描述和标签。最终问卷扩展了初始框架,重点关注用户意图、文本结构和信息验证。

arXiv:2509.26205v1 Announce Type: new Abstract: Retrieval-augmented generation (RAG) systems are increasingly deployed in user-facing applications, yet systematic, human-centered evaluation of their outputs remains underexplored. Building on Gienapp's utility-dimension framework, we designed a human-centred questionnaire that assesses RAG outputs across 12 dimensions. We iteratively refined the questionnaire through several rounds of ratings on a set of query-output pairs and semantic discussions. Ultimately, we incorporated feedback from both a human rater and a human-LLM pair. Results indicate that while large language models (LLMs) reliably focus on metric descriptions and scale labels, they exhibit weaknesses in detecting textual format variations. Humans struggled to focus strictly on metric descriptions and labels. LLM ratings and explanations were viewed as a helpful support, but numeric LLM and human ratings lacked agreement. The final questionnaire extends the initial framework by focusing on user intent, text structuring, and information verifiability.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

RAG系统 评估问卷 大语言模型 文本格式 信息验证
相关文章