cs.AI updates on arXiv.org 10月01日
LLMs在材料科学知识发现中的应用探索
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文探讨大型语言模型(LLMs)在材料科学知识发现中的潜力,通过将LangGraph工具功能重新用于提供黑盒函数进行测试,展示其探索、发现和利用化学相互作用的能力。

arXiv:2509.26201v1 Announce Type: new Abstract: Large Language Models (LLMs) have garnered significant attention for several years now. Recently, their use as independently reasoning agents has been proposed. In this work, we test the potential of such agents for knowledge discovery in materials science. We repurpose LangGraph's tool functionality to supply agents with a black box function to interrogate. In contrast to process optimization or performing specific, user-defined tasks, knowledge discovery consists of freely exploring the system, posing and verifying statements about the behavior of this black box, with the sole objective of generating and verifying generalizable statements. We provide proof of concept for this approach through a children's parlor game, demonstrating the role of trial-and-error and persistence in knowledge discovery, and the strong path-dependence of results. We then apply the same strategy to show that LLM agents can explore, discover, and exploit diverse chemical interactions in an advanced Atomic Layer Processing reactor simulation using intentionally limited probe capabilities without explicit instructions.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

LLMs 知识发现 材料科学 化学相互作用 LangGraph
相关文章