cs.AI updates on arXiv.org 10月01日
LLMs在社会科学应用中的误读与谨慎使用
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文指出大型语言模型(LLMs)在社会科学应用中的误读风险,强调其作为高容量模式匹配器的角色,而非概率推理的替代品,并提出一系列实用指导原则。

arXiv:2509.26080v1 Announce Type: new Abstract: Large Language Models (LLMs) are being increasingly used as synthetic agents in social science, in applications ranging from augmenting survey responses to powering multi-agent simulations. Because strong prediction plus conditioning prompts, token log-probs, and repeated sampling mimic Bayesian workflows, their outputs can be misinterpreted as posterior-like evidence from a coherent model. However, prediction does not equate to probabilism, and accurate points do not imply calibrated uncertainty. This paper outlines cautions that should be taken when interpreting LLM outputs and proposes a pragmatic reframing for the social sciences in which LLMs are used as high-capacity pattern matchers for quasi-predictive interpolation under explicit scope conditions and not as substitutes for probabilistic inference. Practical guardrails such as independent draws, preregistered human baselines, reliability-aware validation, and subgroup calibration, are introduced so that researchers may engage in useful prototyping and forecasting while avoiding category errors.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

大型语言模型 社会科学 误读 概率推理 模式匹配
相关文章