cs.AI updates on arXiv.org 10月01日
ASGuard框架提升LLM拒绝机制安全性
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出ASGuard框架,通过电路分析和激活缩放策略,有效缓解大型语言模型(LLM)在拒绝有害请求时的脆弱性,平衡安全性与实用性。

arXiv:2509.25843v1 Announce Type: new Abstract: Large language models (LLMs), despite being safety-aligned, exhibit brittle refusal behaviors that can be circumvented by simple linguistic changes. As tense jailbreaking demonstrates that models refusing harmful requests often comply when rephrased in past tense, a critical generalization gap is revealed in current alignment methods whose underlying mechanisms are poorly understood. In this work, we introduce Activation-Scaling Guard (ASGuard), an insightful, mechanistically-informed framework that surgically mitigates this specific vulnerability. For the first step, we use circuit analysis to identify the specific attention heads causally linked to the targeted jailbreaking, the tense-changing attack. Second, we train a precise, channel-wise scaling vector to recalibrate the activation of tense vulnerable heads. Lastly, we apply it into a "preventative fine-tuning", forcing the model to learn a more robust refusal mechanism. Across three LLMs, ASGuard effectively reduces the attack success rate of targeted jailbreaking while preserving general capabilities and minimizing over refusal, achieving a Pareto-optimal balance between safety and utility. Our findings underscore how adversarial suffixes suppress the propagation of the refusal-mediating direction, based on mechanistic analysis. Furthermore, our work showcases how a deep understanding of model internals can be leveraged to develop practical, efficient, and targeted methods for adjusting model behavior, charting a course for more reliable and interpretable AI safety.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

大型语言模型 拒绝机制 安全增强 ASGuard框架 激活缩放
相关文章