cs.AI updates on arXiv.org 10月01日 13:58
PureVQ-GAN:高效防御数据中毒的新方法
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出了一种名为PureVQ-GAN的新型防御数据中毒方法,通过向量量化变分自编码器与GAN判别器,破坏细粒度触发模式,同时保留语义内容,有效防御数据中毒攻击。

arXiv:2509.25792v1 Announce Type: new Abstract: We introduce PureVQ-GAN, a defense against data poisoning that forces backdoor triggers through a discrete bottleneck using Vector-Quantized VAE with GAN discriminator. By quantizing poisoned images through a learned codebook, PureVQ-GAN destroys fine-grained trigger patterns while preserving semantic content. A GAN discriminator ensures outputs match the natural image distribution, preventing reconstruction of out-of-distribution perturbations. On CIFAR-10, PureVQ-GAN achieves 0% poison success rate (PSR) against Gradient Matching and Bullseye Polytope attacks, and 1.64% against Narcissus while maintaining 91-95% clean accuracy. Unlike diffusion-based defenses requiring hundreds of iterative refinement steps, PureVQ-GAN is over 50x faster, making it practical for real training pipelines.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

数据中毒 防御方法 PureVQ-GAN GAN判别器 向量量化
相关文章