cs.AI updates on arXiv.org 10月01日
小模型奖励调整提升旅行规划器Agentic RL表现
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文研究了在大语言模型上实现Agentic RL在TravelPlanner基准测试中的效果。Planner-R1方法在仅用180个训练查询的情况下,达到了56.9%的最终通过率,比GPT-5的21.2%基准提高了2.7倍,成为公共排行榜上最强的agentic结果。研究发现,小型模型对奖励塑造非常敏感,使用密集的进程级信号时,其性能与32B模型相当,而计算效率提高了3.5倍,内存效率提高了1.5倍。大型模型在稀疏奖励下更稳健,但奖励塑造的相对收益较小,运行间的方差也较大。课程学习没有提供显著好处,但塑造的奖励始终增强了学习动态,使得8B模型成为Agentic RL最有效率的设置。值得注意的是,这些增益并未导致过拟合,优化后的模型在域外任务上的性能大多保持或超过了基准。

arXiv:2509.25779v1 Announce Type: new Abstract: We investigated Agentic RL with large language models on the \textsc{TravelPlanner} benchmark. Our approach, \textsc{Planner-R1}, achieved a \textbf{56.9\%} final-pass rate with only 180 training queries, a $2.7\times$ improvement over GPT-5's $21.2\%$ baseline and the strongest agentic result on the public leaderboard. A central finding was that smaller models (8B) were highly responsive to reward shaping: with dense process-level signals, they reached competitive performance while being $3.5\times$ more compute-efficient and $1.5\times$ more memory-efficient than 32B models. Larger models were more robust under sparse rewards but exhibited smaller relative gains from shaping and higher variance across runs. While curriculum learning offered no significant benefit, shaped rewards consistently amplified learning dynamics, making 8B models the most efficient setting for agentic RL. Crucially, these gains did not come at the cost of overfitting: fine-tuned models mostly maintained or exceeded baseline performance on out-of-domain tasks, including \textsc{Multi-IF}, \textsc{NaturalPlan}, and $\tau$-\textsc{Bench}. These results establish reward shaping as a decisive lever for scaling agentic RL, highlight the competitive strength of smaller models, and demonstrate that efficiency can be achieved without sacrificing generalization.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

Agentic RL TravelPlanner 奖励塑造 小模型 效率提升
相关文章