cs.AI updates on arXiv.org 10月01日
LGK:基于地标引导的知识导航方法
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出一种名为LGK的视觉语言导航方法,通过引入外部知识库解决传统方法中常识推理能力不足的问题,实现复杂场景下的自主导航。

arXiv:2509.25655v1 Announce Type: new Abstract: Vision-and-language navigation is one of the core tasks in embodied intelligence, requiring an agent to autonomously navigate in an unfamiliar environment based on natural language instructions. However, existing methods often fail to match instructions with environmental information in complex scenarios, one reason being the lack of common-sense reasoning ability. This paper proposes a vision-and-language navigation method called Landmark-Guided Knowledge (LGK), which introduces an external knowledge base to assist navigation, addressing the misjudgment issues caused by insufficient common sense in traditional methods. Specifically, we first construct a knowledge base containing 630,000 language descriptions and use knowledge Matching to align environmental subviews with the knowledge base, extracting relevant descriptive knowledge. Next, we design a Knowledge-Guided by Landmark (KGL) mechanism, which guides the agent to focus on the most relevant parts of the knowledge by leveraging landmark information in the instructions, thereby reducing the data bias that may arise from incorporating external knowledge. Finally, we propose Knowledge-Guided Dynamic Augmentation (KGDA), which effectively integrates language, knowledge, vision, and historical information. Experimental results demonstrate that the LGK method outperforms existing state-of-the-art methods on the R2R and REVERIE vision-and-language navigation datasets, particularly in terms of navigation error, success rate, and path efficiency.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

视觉语言导航 知识库 地标引导 LGK方法 导航性能
相关文章