cs.AI updates on arXiv.org 10月01日
IRCAM-AVN:音频视觉导航新框架
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出了一种名为IRCAM-AVN的音频视觉导航框架,通过融合多模态信息和序列建模,优化特征提取,提升导航性能。

arXiv:2509.25652v1 Announce Type: new Abstract: Audio-visual navigation represents a significant area of research in which intelligent agents utilize egocentric visual and auditory perceptions to identify audio targets. Conventional navigation methodologies typically adopt a staged modular design, which involves first executing feature fusion, then utilizing Gated Recurrent Unit (GRU) modules for sequence modeling, and finally making decisions through reinforcement learning. While this modular approach has demonstrated effectiveness, it may also lead to redundant information processing and inconsistencies in information transmission between the various modules during the feature fusion and GRU sequence modeling phases. This paper presents IRCAM-AVN (Iterative Residual Cross-Attention Mechanism for Audiovisual Navigation), an end-to-end framework that integrates multimodal information fusion and sequence modeling within a unified IRCAM module, thereby replacing the traditional separate components for fusion and GRU. This innovative mechanism employs a multi-level residual design that concatenates initial multimodal sequences with processed information sequences. This methodological shift progressively optimizes the feature extraction process while reducing model bias and enhancing the model's stability and generalization capabilities. Empirical results indicate that intelligent agents employing the iterative residual cross-attention mechanism exhibit superior navigation performance.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

音频视觉导航 多模态信息融合 序列建模 导航性能 IRCAM-AVN
相关文章