cs.AI updates on arXiv.org 10月01日
LLM实现模糊认知图到文本的映射与重建
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文介绍了一种利用大型语言模型将模糊认知图映射为文本并从文本重建模糊认知图的可解释人工智能系统。系统通过近似身份映射实现,类似于自编码器,但具有可解释性,且人类可阅读并理解编码后的文本。

arXiv:2509.25593v1 Announce Type: new Abstract: A large language model (LLM) can map a feedback causal fuzzy cognitive map (FCM) into text and then reconstruct the FCM from the text. This explainable AI system approximates an identity map from the FCM to itself and resembles the operation of an autoencoder (AE). Both the encoder and the decoder explain their decisions in contrast to black-box AEs. Humans can read and interpret the encoded text in contrast to the hidden variables and synaptic webs in AEs. The LLM agent approximates the identity map through a sequence of system instructions that does not compare the output to the input. The reconstruction is lossy because it removes weak causal edges or rules while it preserves strong causal edges. The encoder preserves the strong causal edges even when it trades off some details about the FCM to make the text sound more natural.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

大型语言模型 模糊认知图 可解释人工智能 自编码器
相关文章