cs.AI updates on arXiv.org 10月01日
FGA技术消除模型幻觉,提升语言生成准确性
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文介绍了一种名为Fact Grounded Attention (FGA)的新型架构修改,通过直接将可验证的知识注入注意力机制,将不可靠的语言模型转化为确定性的事实陈述者,显著提升了语言生成的准确性。

arXiv:2509.25252v1 Announce Type: new Abstract: "The greatest enemy of knowledge is not ignorance, it is the illusion of knowledge." Large Language Models have conquered natural language but remain prisoners of their own probabilistic nature--confidently hallucinating facts they never truly knew. We present Fact Grounded Attention (FGA), a novel architectural modification that transforms unreliable language models into deterministic truth tellers by injecting verifiable knowledge directly into the attention mechanism. Unlike existing approaches that patch hallucinations after generation or prepend retrieved text, FGA intervenes at the mathematical heart of the transformer--the pre-softmax attention scores--creating a model that cannot hallucinate when facts exist in its knowledge base. Our experiments across 1,107 technical queries spanning smartphones, laptops, and electric vehicles demonstrate a transformation from 6.3% accuracy in vanilla Llama 3.2 to 99.7% accuracy with FGA. More critically, knowledge updates occur in under one second without retraining, compared to hours for parameter editing approaches. FGA doesn't just reduce hallucination--it eliminates it entirely for verifiable facts, marking a fundamental shift from probabilistic approximation to deterministic precision in neural language generation.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

FGA 语言模型 幻觉消除 知识注入 准确性提升
相关文章