MarkTechPost@AI 10月01日
智谱AI发布GLM-4.6,聚焦长上下文与智能体工作流
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

智谱AI推出了GLM系列模型的重大更新GLM-4.6,重点提升了智能体工作流、长上下文理解能力以及实际编码任务的表现。新模型将输入上下文窗口扩展至20万token,最大输出支持12.8万token,并在应用任务中降低了token消耗。GLM-4.6还提供了开源权重,支持本地部署,并在CC-Bench基准测试中展现了与Claude Sonnet 4接近的性能,同时在处理任务时比GLM-4.5减少约15%的token使用量。该模型已通过Z.ai API和OpenRouter提供,并与多种主流编码智能体集成。

💡 **增强的长上下文处理能力**: GLM-4.6显著提升了处理长文本的能力,将输入上下文窗口扩展至20万token,最大输出token数也达到12.8万。这使得模型能够理解和处理更长的文档、对话或代码,为需要深度理解和复杂推理的应用场景提供了强大支持。

💻 **在实际编码任务中表现提升**: GLM-4.6在CC-Bench(一个在隔离Docker环境中由人类评估者运行的多轮任务基准)上取得了与Claude Sonnet 4接近的成绩,并且在完成任务时比GLM-4.5减少了约15%的token消耗。这表明其在处理真实世界的编码任务方面效率更高,成本更低。

🌐 **开放部署与生态整合**: GLM-4.6提供了开源权重,并支持在Hugging Face和ModelScope等平台上进行本地部署,同时兼容vLLM和SGLang等推理框架。此外,它已集成到Z.ai API、OpenRouter以及多种流行的编码智能体中,为开发者提供了灵活的使用方式和广泛的应用可能性。

Zhipu AI has released GLM-4.6, a major update to its GLM series focused on agentic workflows, long-context reasoning, and practical coding tasks. The model raises the input window to 200K tokens with a 128K max output, targets lower token consumption in applied tasks, and ships with open weights for local deployment.

https://z.ai/blog/glm-4.6

So, what’s exactly is new?

https://z.ai/blog/glm-4.6

Summary

GLM-4.6 is an incremental but material step: a 200K context window, ~15% token reduction on CC-Bench versus GLM-4.5, near-parity task win-rate with Claude Sonnet 4, and immediate availability via Z.ai, OpenRouter, and open-weight artifacts for local serving.


FAQs

1) What are the context and output token limits?
GLM-4.6 supports a 200K input context and 128K maximum output tokens.

2) Are open weights available and under what license?
Yes. The Hugging Face model card lists open weights with License: MIT and a 357B-parameter MoE configuration (BF16/F32 tensors).

3) How does GLM-4.6 compare to GLM-4.5 and Claude Sonnet 4 on applied tasks?
On the extended CC-Bench, GLM-4.6 reports ~15% fewer tokens vs. GLM-4.5 and near-parity with Claude Sonnet 4 (48.6% win-rate).

4) Can I run GLM-4.6 locally?
Yes. Zhipu provides weights on Hugging Face/ModelScope and documents local inference with vLLM and SGLang; community quantizations are appearing for workstation-class hardware.


Check out the GitHub Page, Hugging Face Model Card and Technical details. Feel free to check out our GitHub Page for Tutorials, Codes and Notebooks. Also, feel free to follow us on Twitter and don’t forget to join our 100k+ ML SubReddit and Subscribe to our Newsletter.

The post Zhipu AI Releases GLM-4.6: Achieving Enhancements in Real-World Coding, Long-Context Processing, Reasoning, Searching and Agentic AI appeared first on MarkTechPost.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

GLM-4.6 Zhipu AI 长上下文 智能体工作流 AI模型 Long Context Agentic Workflows AI Model
相关文章