Calvin French-Owen 09月30日
AI编程工具改变思考方式
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

AI编程工具正在改变工程师的思考方式。远程产品如Codex Cloud鼓励用户在代理工作时减少思考,专注于最终结果;交互式产品如Claude Code或Codex CLI则让用户更关注规格和高级方法;IDE产品如Cursor则要求用户提前分解问题。这些工具将主动思考周期分为提供上下文、制定计划、实施代码和验证代码四个阶段。目前LLM在实施(第三阶段)和验证(第四阶段)方面表现最强,但在制定计划(第二阶段)和提供正确上下文(第一阶段)方面仍需人类辅助。不同的产品UX要求工程师以不同方式思考,没有单一工作流能满足所有用户,关键在于选择如何思考。

💡AI编程工具通过改变产品形态(远程、交互式、IDE)显著影响用户在编程过程中的思考分配。远程产品如Codex Cloud设计为让代理工作时用户减少思考,转而关注最终结果;交互式产品如Claude Code或Codex CLI则促使用户更深入地思考规格和代理采用的高级方法;而IDE产品如Cursor则要求用户承担更多自我规划的责任。

🔄所有这些产品都要求用户在四个主动思考周期间切换:提供上下文、制定计划、实施代码和验证代码。这种切换模式反映了现代编程中人与AI协作的新动态,其中每个阶段都需要不同的认知投入和策略。

📊LLM当前的能力强弱顺序为:实施(第三阶段)>验证(第四阶段)>计划(第二阶段)>提供上下文(第一阶段)。这意味着虽然AI在处理复杂技术细节和按既定计划执行方面表现出色,但在理解全局组织背景、从用户那里获取信息以及提供精确上下文方面仍高度依赖人类。

🎯不同产品通过不同的UX设计引导用户思考方式。例如,Codex Cloud的UX鼓励接受代理结果而减少过程思考,而Codex CLI的终端交互则强化了跟随计划、验证执行的过程性思考。这种差异导致工程师在使用不同工具时体验迥异,反映了工具设计对认知流程的塑造作用。

⚖️工程师对AI编程工具的偏好差异源于不同问题的需求:有些只需清晰规格即可完全定义实现,有些则需要通过编写代码进行迭代式思考,还有些更倾向于先评审初稿再编写。无论偏好如何,不同的UX都要求不同的思考模式,因此最佳产品应允许用户选择思考的'方式'而非强加单一工作流。

<p>As coding agents become more capable and long-running, they don’t remove the human job of thinking. Someone still has to direct the work—set goals, choose constraints, and judge outputs.</p><p>Everyone seems to recognize this in the abstract. But nobody seems to talk much about how the product shape fundamentally shifts the type of thinking required to write code.</p><p>I&#x27;d argue that seemingly minor UX differences between different coding agents end up having a massive impact on how users spend their &quot;thinking budget.&quot;</p><p>With a <strong>remote-first product like Codex Cloud</strong> (not the CLI), the product encourages you not to spend time thinking while the agent is <em>working</em> and spend more time thinking about the <em>end result</em> that the agent gave. We intentionally didn&#x27;t want users watching the agent invoking terminal commands, because the model works very differently than a human might.</p><p>With an <strong>interactive product like Claude Code or Codex CLI</strong>, you naturally spend more time thinking about about specs and the high level approach the agent is taking as you follow the chain of thought in the terminal. But you need some other means of looking at diffs (editor / GitHub), so it tends to be less a part of the workflow vs following the plan the tool has created and the commands it is running to verify as it implements.</p><p>With an <strong>IDE-focused product like Cursor</strong>, you accept most diffs as they come in. Your thinking window is relatively short because you are accepting code (or not). You need to do relatively little thinking to supply the right context, because it&#x27;s already in your editor. The trade-off is that you have probably broken down the problem ahead of time. You need to spend more time coming up with the plan/approach yourself.</p><p>All of these products need to shift the &quot;active thinking&quot; cycles around between...</p><ol><li>supplying the right context</li><li>coming up with a plan</li><li>implementing the code</li><li>verifying and reviewing it</li></ol><p>If I were to guess, the area that LLMs are strongest right now is <strong>3 (implementation) &gt; 4 (verification) &gt; 2 (planning) &gt; 1 (context)</strong>. Until we deploy tools for doing search across the organization, eliciting info from the user, and understanding the global context of an org–providing the right context still seems to be the area where humans can provide the most value.</p><p>Conversely, LLMs excel at taking well-specified plans and implementing them. They handle race conditions, error handling, and complex technical details remarkably well.</p><p>If you accept this idea of a thinking budget, it&#x27;s easy to understand why engineers might have very different experiences (positive and negative) using the different tools.</p><p>Some problems require only a clear spec—you know the implementation completely. Others require writing code to &quot;think through&quot; the problem, then refactoring iteratively. Some engineers prefer reviewing a first pass to writing from scratch.</p><p>Whatever your preference, different UX requires you to think in different ways. I think it&#x27;s unlikely that a &#x27;single workflow&#x27; will satisfy all users. You still have to think... but the best products will let users choose <em>how</em> they want to do that. <sup id="footnote-fnref-1"><a href="#footnote-fn-1">1</a></sup></p><section data-footnotes="true" class="footnotes"><h2 class="sr-only" id="footnote-label">Footnotes</h2><ol><li id="footnote-fn-1"><p>The new Codex IDE extension actually does a very good job of this. You can decide to kick off tasks locally, or hand them off to the cloud. Disclosure: I was working on this team, so I am biased. <a href="#footnote-fnref-1">↩</a></p></li></ol></section>

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

AI编程工具 人机协作 UX设计 认知流程 LLM能力模型 工程效率
相关文章