cs.AI updates on arXiv.org 09月30日
RISE:提高机器人系统仿学习安全性的新框架
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出RISE,一种通过随机编码增强机器人系统仿学习安全性的新框架,通过变分潜在表示来处理环境参数的错误测量,提高机器人对感知噪声和环境不确定性的鲁棒性。

arXiv:2503.12243v2 Announce Type: replace-cross Abstract: Ensuring safety in robotic systems remains a fundamental challenge, especially when deploying offline policy-learning methods such as imitation learning in dynamic environments. Traditional behavior cloning (BC) often fails to generalize when deployed without fine-tuning as it does not account for disturbances in observations that arises in real-world, changing environments. To address this limitation, we propose RISE (Robust Imitation through Stochastic Encodings), a novel imitation-learning framework that explicitly addresses erroneous measurements of environment parameters into policy learning via a variational latent representation. Our framework encodes parameters such as obstacle state, orientation, and velocity into a smooth variational latent space to improve test time generalization. This enables an offline-trained policy to produce actions that are more robust to perceptual noise and environment uncertainty. We validate our approach on two robotic platforms, an autonomous ground vehicle and a Franka Emika Panda manipulator and demonstrate improved safety robustness while maintaining goal-reaching performance compared to baseline methods.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

机器人系统 仿学习 安全性 RISE框架 环境参数
相关文章