cs.AI updates on arXiv.org 09月30日
AdaInit:量子神经网络初始化新框架
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出AdaInit,利用具有次负期望性质的生成模型迭代合成量子神经网络初始参数,有效缓解了噪声中等规模量子计算中的 barren plateaus 问题。

arXiv:2502.13166v2 Announce Type: replace-cross Abstract: In the era of noisy intermediate-scale quantum (NISQ) computing, Quantum Neural Networks (QNNs) have emerged as a promising approach for various applications, yet their training is often hindered by barren plateaus (BPs), where gradient variance vanishes exponentially in terms of the qubit size. Most existing initialization-based mitigation strategies rely heavily on pre-designed static parameter distributions, thereby lacking adaptability to diverse model sizes or data conditions. To address these limitations, we propose AdaInit, a foundational framework that leverages generative models with the submartingale property to iteratively synthesize initial parameters for QNNs that yield non-negligible gradient variance, thereby mitigating BPs. Unlike conventional one-shot initialization methods, AdaInit adaptively explores the parameter space by incorporating dataset characteristics and gradient feedback, with theoretical guarantees of convergence to finding a set of effective initial parameters for QNNs. We provide rigorous theoretical analyses of the submartingale-based process and empirically validate that AdaInit consistently outperforms existing initialization methods in maintaining higher gradient variance across various QNN scales. We believe this work may initiate a new avenue to mitigate BPs.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

量子神经网络 初始化 次负期望性质 barren plateaus 量子计算
相关文章