cs.AI updates on arXiv.org 09月30日 12:08
大型语言模型 speculative decoding 漏洞研究
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文揭示了一种通过监控每轮迭代中的字符计数或数据包大小来推断输入相关正确和错误猜测模式的新侧信道攻击。针对四种speculative-decoding方案进行了实验,并提出了一系列缓解措施。

arXiv:2411.01076v3 Announce Type: replace-cross Abstract: Deployed large language models (LLMs) often rely on speculative decoding, a technique that generates and verifies multiple candidate tokens in parallel, to improve throughput and latency. In this work, we reveal a new side-channel whereby input-dependent patterns of correct and incorrect speculations can be inferred by monitoring per-iteration token counts or packet sizes.We demonstrate that an adversary observing these patterns can fingerprint user queries with >90% accuracy across four speculative-decoding schemes, REST (100\%), LADE (up to 92%), BiLD (up to 95%), and EAGLE (up to 77.6%) and leak confidential datastore contents used for prediction at rates exceeding 25 tokens/sec. We evaluate the side-channel attacks in both research prototypes as well as the production-grade vLLM serving framework. To defend against these, we propose and evaluate a suite of mitigations, including packet padding and iteration-wise token aggregation.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

大型语言模型 speculative decoding 侧信道攻击 漏洞 缓解措施
相关文章