cs.AI updates on arXiv.org 09月30日
图像生成神经网络表征结构新解释
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出了一种新的神经网络图像生成方法,解释了图像生成中的表征结构,定义了包括特征完整性、空间有界性和一致性等特性的表征结构,并验证了分解原始特征组件的准确性。

arXiv:2410.04421v3 Announce Type: replace-cross Abstract: This paper explains a neural network for image generation from a new perspective, i.e., explaining representation structures for image generation. We propose a set of desirable properties to define the representation structure of a neural network for image generation, including feature completeness, spatial boundedness and consistency. These properties enable us to propose a method for disentangling primitive feature components from the intermediate-layer features, where each feature component generates a primitive regional pattern covering multiple image patches. In this way, the generation of the entire image can be explained as a superposition of these feature components. We prove that these feature components, which satisfy the feature completeness property and the linear additivity property (derived from the feature completeness, spatial boundedness, and consistency properties), can be computed as OR Harsanyi interaction. Experiments have verified the faithfulness of the disentangled primitive regional patterns.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

图像生成 神经网络 表征结构 特征分解 图像模式
相关文章