cs.AI updates on arXiv.org 09月30日
动态环境机器人导航新方法
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出一种基于深度强化学习的机器人导航方法,通过识别实体类型,优化奖励函数,实现与不同类型实体和静态障碍物的安全交互,显著提高训练效率,实验证明优于现有导航和避障方法。

arXiv:2408.14183v2 Announce Type: replace-cross Abstract: Efficient navigation in dynamic environments is crucial for autonomous robots interacting with moving agents and static obstacles. We present a novel deep reinforcement learning approach that improves robot navigation and interaction with different types of agents and obstacles based on specific safety requirements. Our approach uses information about the entity types, improving collision avoidance and ensuring safer navigation. We introduce a new reward function that penalizes the robot for being close to or colliding with different entities such as adults, bicyclists, children, and static obstacles, while also encouraging the robot's progress toward the goal. We propose an optimized algorithm that significantly accelerates the training, validation, and testing phases, enabling efficient learning in complex environments. Comprehensive experiments demonstrate that our approach consistently outperforms state-of-the-art navigation and collision avoidance methods.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

深度强化学习 机器人导航 动态环境 安全交互 避障
相关文章