cs.AI updates on arXiv.org 09月30日
RAGA算法对抗恶意拜占庭攻击与数据异构性
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出了一种新型鲁棒平均梯度算法(RAGA),用于在恶意拜占庭攻击和数据异构性的背景下进行联邦学习。RAGA使用几何中值进行聚合,并允许灵活的本地更新轮数。理论分析表明,在数据异构性减少的情况下,RAGA可以实现线性收敛速率。

arXiv:2403.13374v4 Announce Type: replace-cross Abstract: This paper addresses federated learning (FL) in the context of malicious Byzantine attacks and data heterogeneity. We introduce a novel Robust Average Gradient Algorithm (RAGA), which uses the geometric median for aggregation and {allows flexible round number for local updates.} Unlike most existing resilient approaches, which base their convergence analysis on strongly-convex loss functions or homogeneously distributed datasets, this work conducts convergence analysis for both strongly-convex and non-convex loss functions over heterogeneous datasets. The theoretical analysis indicates that as long as the fraction of the {data} from malicious users is less than half, RAGA can achieve convergence at a rate of $\mathcal{O}({1}/{T^{2/3- \delta}})$ for non-convex loss functions, where $T$ is the iteration number and $\delta \in (0, 2/3)$. For strongly-convex loss functions, the convergence rate is linear. Furthermore, the stationary point or global optimal solution is shown to be attainable as data heterogeneity diminishes. Experimental results validate the robustness of RAGA against Byzantine attacks and demonstrate its superior convergence performance compared to baselines under varying intensities of Byzantine attacks on heterogeneous datasets.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

联邦学习 拜占庭攻击 数据异构性 鲁棒算法 收敛速率
相关文章