cs.AI updates on arXiv.org 09月30日
双机器学习融合实验与观测研究
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出一种双机器学习方法,融合实验与观测研究,以检验假设并估计治疗效果。该方法在假设被违反时仍能提供一致的治疗效果估计,并通过案例研究证明了其实际应用价值。

arXiv:2307.01449v3 Announce Type: replace-cross Abstract: Experimental and observational studies often lack validity due to untestable assumptions. We propose a double machine learning approach to combine experimental and observational studies, allowing practitioners to test for assumption violations and estimate treatment effects consistently. Our framework proposes a falsification test for external validity and ignorability under milder assumptions. We provide consistent treatment effect estimators even when one of the assumptions is violated. However, our no-free-lunch theorem highlights the necessity of accurately identifying the violated assumption for consistent treatment effect estimation. Through comparative analyses, we show our framework's superiority over existing data fusion methods. The practical utility of our approach is further exemplified by three real-world case studies, underscoring its potential for widespread application in empirical research.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

机器学习 实验研究 观测研究 治疗效果 数据融合
相关文章