cs.AI updates on arXiv.org 09月30日
NeuSymEA:神经符号推理框架在实体对齐中的应用
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出了一种名为NeuSymEA的神经符号推理框架,用于知识图谱的实体对齐。通过结合符号和神经模型的优势,该框架能够有效识别实体对,并在低资源环境下表现稳健。

arXiv:2410.04153v2 Announce Type: replace Abstract: Entity alignment (EA) aims to merge two knowledge graphs (KGs) by identifying equivalent entity pairs. Existing methods can be categorized into symbolic and neural models. Symbolic models, while precise, struggle with substructure heterogeneity and sparsity, whereas neural models, although effective, generally lack interpretability and cannot handle uncertainty. We propose NeuSymEA, a unified neuro-symbolic reasoning framework that combines the strengths of both methods to fully exploit the cross-KG structural pattern for robust entity alignment. NeuSymEA models the joint probability of all possible pairs' truth scores in a Markov random field, regulated by a set of rules, and optimizes it with the variational EM algorithm. In the E-step, a neural model parameterizes the truth score distributions and infers missing alignments. In the M-step, the rule weights are updated based on the observed and inferred alignments, handling uncertainty. We introduce an efficient symbolic inference engine driven by logic deduction, enabling reasoning with extended rule lengths. NeuSymEA achieves a significant 7.6\% hit@1 improvement on $\text{DBP15K}{\text{ZH-EN}}$ compared with strong baselines and demonstrates robustness in low-resource settings, achieving 73.7\% hit@1 accuracy on $\text{DBP15K}{\text{FR-EN}}$ with only 1\% pairs as seed alignments. Codes are released at https://github.com/chensyCN/NeuSymEA-NeurIPS25.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

实体对齐 知识图谱 神经符号推理 低资源环境 实体识别
相关文章