cs.AI updates on arXiv.org 09月30日
RCR方法提升LLM输出安全性与质量
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出一种名为RCR的方法,通过利用大型语言模型(LLM)的随机性来预防不安全或低质量输出,通过投票和再生机制提高输出质量,实现低成本下的高可靠性。

arXiv:2407.16994v3 Announce Type: replace Abstract: We propose an approach for preventing unsafe or otherwise low-quality large language model (LLM) outputs by leveraging the stochasticity of LLMs, an approach we call Repeated Checking with Regeneration (RCR). In this system, LLM checkers vote on the acceptability of a generated output, regenerating it if a threshold of disapproval is reached, until sufficient checkers approve. Based on our estimators for cost and failure rate and experimental data tailored to the application, our algorithm achieves a desired expected failure rate at Pareto-optimal cost. The failure rate provably decreases exponentially as a function of cost, and the models reasonably estimate the actual performance of such a system in action, even with limited data. This approach does not depend on the language model used, and could allow cheap, small LLMs to control, constrain, or at some tasks even outperform very complex and costly ones.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

LLM RCR方法 输出质量 安全控制 成本效益
相关文章