cs.AI updates on arXiv.org 09月30日
BRIDGE:突破单目深度估计的RL优化框架
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出BRIDGE,一种基于强化学习优化的单目深度估计框架,通过生成大量高精度深度图合成图像,实现深度估计模型在规模和多样性上的突破。

arXiv:2509.25077v1 Announce Type: cross Abstract: Monocular Depth Estimation (MDE) is a foundational task for computer vision. Traditional methods are limited by data scarcity and quality, hindering their robustness. To overcome this, we propose BRIDGE, an RL-optimized depth-to-image (D2I) generation framework that synthesizes over 20M realistic and geometrically accurate RGB images, each intrinsically paired with its ground truth depth, from diverse source depth maps. Then we train our depth estimation model on this dataset, employing a hybrid supervision strategy that integrates teacher pseudo-labels with ground truth depth for comprehensive and robust training. This innovative data generation and training paradigm enables BRIDGE to achieve breakthroughs in scale and domain diversity, consistently outperforming existing state-of-the-art approaches quantitatively and in complex scene detail capture, thereby fostering general and robust depth features. Code and models are available at https://dingning-liu.github.io/bridge.github.io/.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

单目深度估计 强化学习 深度图合成 模型训练 计算机视觉
相关文章