cs.AI updates on arXiv.org 09月30日
隐私保护学习系统优化:跨领域协作
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文概述了利用多方计算、零知识证明和全同态加密等技术,通过软硬件/算法协同设计,降低隐私保护学习系统的计算和通信开销,实现大规模应用的可能性。

arXiv:2509.25072v1 Announce Type: cross Abstract: Privacy-preserving technologies have introduced a paradigm shift that allows for realizable secure computing in real-world systems. The significant barrier to the practical adoption of these primitives is the computational and communication overhead that is incurred when applied at scale. In this paper, we present an overview of our efforts to bridge the gap between this overhead and practicality for privacy-preserving learning systems using multi-party computation (MPC), zero-knowledge proofs (ZKPs), and fully homomorphic encryption (FHE). Through meticulous hardware/software/algorithm co-design, we show progress towards enabling LLM-scale applications in privacy-preserving settings. We demonstrate the efficacy of our solutions in several contexts, including DNN IP ownership, ethical LLM usage enforcement, and transformer inference.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

隐私保护 学习系统 多方计算 零知识证明 全同态加密
相关文章