cs.AI updates on arXiv.org 09月30日
稀疏自编码器分析预训练模型
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出使用稀疏自编码器(SAEs)分析预训练模型隐藏表示,以歌唱技术分类为例,揭示自监督学习系统的内部结构,并验证SAEs在识别编码表示中的潜在因素上的有效性。

arXiv:2509.24793v1 Announce Type: cross Abstract: Audio pretrained models are widely employed to solve various tasks in speech processing, sound event detection, or music information retrieval. However, the representations learned by these models are unclear, and their analysis mainly restricts to linear probing of the hidden representations. In this work, we explore the use of Sparse Autoencoders (SAEs) to analyze the hidden representations of pretrained models, focusing on a case study in singing technique classification. We first demonstrate that SAEs retain both information about the original representations and class labels, enabling their internal structure to provide insights into self-supervised learning systems. Furthermore, we show that SAEs enhance the disentanglement of vocal attributes, establishing them as an effective tool for identifying the underlying factors encoded in the representations.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

稀疏自编码器 预训练模型 表示分析 自监督学习 歌唱技术分类
相关文章