cs.AI updates on arXiv.org 09月30日
LLM去学习机制与挑战分析
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文探讨了大型语言模型中知识去学习的效果及其局限性,提出了一种基于提示词贡献跟踪的可解释去学习框架,通过实验验证了去学习方法的有效性与潜在问题。

arXiv:2509.24675v1 Announce Type: cross Abstract: Unlearning seeks to remove specific knowledge from large language models (LLMs), but its effectiveness remains contested. On one side, "forgotten" knowledge can often be recovered through interventions such as light fine-tuning; on the other side, unlearning may induce catastrophic forgetting that degrades general capabilities. Despite active exploration of unlearning methods, interpretability analyses of the mechanism are scarce due to the difficulty of tracing knowledge in LLMs' complex architectures. We address this gap by proposing unPact, an interpretable framework for unlearning via prompt attribution and contribution tracking. Typically, it quantifies each prompt token's influence on outputs, enabling pre- and post-unlearning comparisons to reveal what changes. Across six mainstream unlearning methods, three LLMs, and three benchmarks, we find that: (1) Unlearning appears to be effective by disrupting focus on keywords in prompt; (2) Much of the knowledge is not truly erased and can be recovered by simply emphasizing these keywords in prompts, without modifying the model's weights; (3) Catastrophic forgetting arises from indiscriminate penalization of all tokens. Taken together, our results suggest an unlearning dilemma: existing methods tend either to be insufficient - knowledge remains recoverable by keyword emphasis, or overly destructive - general performance collapses due to catastrophic forgetting, still leaving a gap to reliable unlearning.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

LLM 去学习 可解释性 知识恢复 模型评估
相关文章