cs.AI updates on arXiv.org 09月30日
REALIGN:基于R-FPGWOT的视频过程学习新框架
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出了一种名为REALIGN的自监督视频过程学习框架,利用R-FPGWOT方法,有效处理视频中的背景干扰、重复动作和非顺序步骤,提高过程学习性能。

arXiv:2509.24382v1 Announce Type: cross Abstract: Learning from procedural videos remains a core challenge in self-supervised representation learning, as real-world instructional data often contains background segments, repeated actions, and steps presented out of order. Such variability violates the strong monotonicity assumptions underlying many alignment methods. Prior state-of-the-art approaches, such as OPEL, leverage Kantorovich Optimal Transport (KOT) to build frame-to-frame correspondences, but rely solely on feature similarity and fail to capture the higher-order temporal structure of a task. In this paper, we introduce REALIGN, a self-supervised framework for procedure learning based on Regularized Fused Partial Gromov-Wasserstein Optimal Transport (R-FPGWOT). In contrast to KOT, our formulation jointly models visual correspondences and temporal relations under a partial alignment scheme, enabling robust handling of irrelevant frames, repeated actions, and non-monotonic step orders common in instructional videos. To stabilize training, we integrate FPGWOT distances with inter-sequence contrastive learning, avoiding the need for multiple regularizers and preventing collapse to degenerate solutions. Across egocentric (EgoProceL) and third-person (ProceL, CrossTask) benchmarks, REALIGN achieves up to 18.9% average F1-score improvements and over 30% temporal IoU gains, while producing more interpretable transport maps that preserve key-step orderings and filter out noise.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

过程学习 R-FPGWOT 视频学习 自监督学习 视频处理
相关文章