cs.AI updates on arXiv.org 09月30日
扩散语言模型的水印技术突破
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出针对扩散语言模型(DLM)的首次水印技术,克服了传统水印技术在DLM中的难题,实现了高准确率和低质量影响的可靠水印。

arXiv:2509.24368v1 Announce Type: cross Abstract: We introduce the first watermark tailored for diffusion language models (DLMs), an emergent LLM paradigm able to generate tokens in arbitrary order, in contrast to standard autoregressive language models (ARLMs) which generate tokens sequentially. While there has been much work in ARLM watermarking, a key challenge when attempting to apply these schemes directly to the DLM setting is that they rely on previously generated tokens, which are not always available with DLM generation. In this work we address this challenge by: (i) applying the watermark in expectation over the context even when some context tokens are yet to be determined, and (ii) promoting tokens which increase the watermark strength when used as context for other tokens. This is accomplished while keeping the watermark detector unchanged. Our experimental evaluation demonstrates that the DLM watermark leads to a >99% true positive rate with minimal quality impact and achieves similar robustness to existing ARLM watermarks, enabling for the first time reliable DLM watermarking.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

扩散语言模型 水印技术 语言模型
相关文章