cs.AI updates on arXiv.org 09月30日
LamFormer:跨器官精细分割网络新方案
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出一种名为LamFormer的新型深度学习网络,针对多器官医学图像分割问题,优化了特征提取模块,采用线性注意力马巴(LAM)增强金字塔编码器捕捉多尺度长距离依赖关系,并通过Parallel Hierarchical Feature Aggregation(PHFA)模块和Reduced Transformer(RT)提升局部细节信息提取能力,在多个复杂数据集上实现优于现有方法的性能。

arXiv:2509.24358v1 Announce Type: cross Abstract: In the field of multi-organ medical image segmentation, recent methods frequently employ Transformers to capture long-range dependencies from image features. However, these methods overlook the high computational cost of Transformers and their deficiencies in extracting local detailed information. To address high computational costs and inadequate local detail information, we reassess the design of feature extraction modules and propose a new deep-learning network called LamFormer for fine-grained segmentation tasks across multiple organs. LamFormer is a novel U-shaped network that employs Linear Attention Mamba (LAM) in an enhanced pyramid encoder to capture multi-scale long-range dependencies. We construct the Parallel Hierarchical Feature Aggregation (PHFA) module to aggregate features from different layers of the encoder, narrowing the semantic gap among features while filtering information. Finally, we design the Reduced Transformer (RT), which utilizes a distinct computational approach to globally model up-sampled features. RRT enhances the extraction of detailed local information and improves the network's capability to capture long-range dependencies. LamFormer outperforms existing segmentation methods on seven complex and diverse datasets, demonstrating exceptional performance. Moreover, the proposed network achieves a balance between model performance and model complexity.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

LamFormer 医学图像分割 深度学习 特征提取
相关文章