cs.AI updates on arXiv.org 09月30日
循环扩散模型优化医学图像生成
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出一种循环扩散模型(CDM),通过引入循环约束,增强条件一致性,提高医学图像生成的真实性和质量。

arXiv:2509.24267v1 Announce Type: cross Abstract: Deep generative models have demonstrated remarkable success in medical image synthesis. However, ensuring conditioning faithfulness and high-quality synthetic images for direct or counterfactual generation remains a challenge. In this work, we introduce a cycle training framework to fine-tune diffusion models for improved conditioning adherence and enhanced synthetic image realism. Our approach, Cycle Diffusion Model (CDM), enforces consistency between generated and original images by incorporating cycle constraints, enabling more reliable direct and counterfactual generation. Experiments on a combined 3D brain MRI dataset (from ABCD, HCP aging & young adults, ADNI, and PPMI) show that our method improves conditioning accuracy and enhances image quality as measured by FID and SSIM. The results suggest that the cycle strategy used in CDM can be an effective method for refining diffusion-based medical image generation, with applications in data augmentation, counterfactual, and disease progression modeling.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

医学图像生成 循环扩散模型 条件一致性 图像质量
相关文章