cs.AI updates on arXiv.org 09月30日
扩散模型与凯利准则结合优化投注回报
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文探讨将扩散模型与凯利准则结合以优化投注游戏回报,分析条件扩散模型存储的额外信息与条件信息之间的互信息,并强调无分类器指导在提升采样时间互信息中的重要性,同时指出对扩散模型无限深度自编码器的常见观点的细微差别。

arXiv:2509.23937v1 Announce Type: cross Abstract: We draw a connection between diffusion models and the Kelly criterion for maximizing returns in betting games. We find that conditional diffusion models store additional information to bind the signal $X$ with the conditioning information $Y$, equal to the mutual information between them. Classifier-free guidance effectively boosts the mutual information between $X$ and $Y$ at sampling time. This is especially helpful in image models, since the mutual information between images and their labels is low, a fact which is intimately connected to the manifold hypothesis. Finally, we point out some nuances in the popular perspective that diffusion models are infinitely deep autoencoders. In doing so, we relate the denoising loss to the Fermi Golden Rule from quantum mechanics.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

扩散模型 凯利准则 投注回报 互信息 量子力学
相关文章