cs.AI updates on arXiv.org 09月30日
DOC方法应对LLM持续学习中的灾难性遗忘
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文揭示了功能方向漂移是现有正则化方法在长期LLM持续学习失败的关键原因,提出了一种名为DOC的动态正交连续微调方法,通过跟踪和动态更新功能方向,调整新任务参数梯度,有效减少灾难性遗忘,提升持续学习能力。

arXiv:2509.23893v1 Announce Type: cross Abstract: Catastrophic forgetting remains a critical challenge in continual learning for large language models (LLMs), where models struggle to retain performance on historical tasks when fine-tuning on new sequential data without access to past datasets. In this paper, we first reveal that the drift of functional directions during the fine-tuning process is a key reason why existing regularization-based methods fail in long-term LLM continual learning. To address this, we propose Dynamic Orthogonal Continual (DOC) fine-tuning, a novel approach that tracks the drift of these functional directions and dynamically updates them during the fine-tuning process. Furthermore, by adjusting the gradients of new task parameters to be orthogonal to the tracked historical function directions, our method mitigates interference between new and old tasks. Extensive experiments on various LLM continual learning benchmarks demonstrate that this approach outperforms prior methods, effectively reducing catastrophic forgetting and providing a robust tool for continuous LLM fine-tuning. Our code is available at https://github.com/meloxxxxxx/DOC.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

LLM 持续学习 灾难性遗忘 DOC方法 正则化
相关文章