cs.AI updates on arXiv.org 09月30日 12:05
融合表达性能渲染与自动钢琴转录的统一框架
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出一种基于Transformer架构的统一框架,联合建模表达性能渲染(EPR)和自动钢琴转录(APT)。通过解耦音符级和全局风格表示,实现风格迁移和灵活渲染。实验结果表明,该框架在EPR和APT任务上表现优异。

arXiv:2509.23878v1 Announce Type: cross Abstract: Expressive performance rendering (EPR) and automatic piano transcription (APT) are fundamental yet inverse tasks in music information retrieval: EPR generates expressive performances from symbolic scores, while APT recovers scores from performances. Despite their dual nature, prior work has addressed them independently. In this paper we propose a unified framework that jointly models EPR and APT by disentangling note-level score content and global performance style representations from both paired and unpaired data. Our framework is built on a transformer-based sequence-to-sequence architecture and is trained using only sequence-aligned data, without requiring fine-grained note-level alignment. To automate the rendering process while ensuring stylistic compatibility with the score, we introduce an independent diffusion-based performance style recommendation module that generates style embeddings directly from score content. This modular component supports both style transfer and flexible rendering across a range of expressive styles. Experimental results from both objective and subjective evaluations demonstrate that our framework achieves competitive performance on EPR and APT tasks, while enabling effective content-style disentanglement, reliable style transfer, and stylistically appropriate rendering. Demos are available at https://jointpianist.github.io/epr-apt/

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

表达性能渲染 自动钢琴转录 Transformer架构 风格迁移 风格渲染
相关文章