cs.AI updates on arXiv.org 09月30日
PCG模型稳定性提升:以Angry Birds为例
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出一种识别和修复现有PCG模型生成的不稳定关卡的方法,以Angry Birds为例,通过对象分割和关卡图像视觉分析进行针对性修复,提升AI生成关卡稳定性和可玩性。

arXiv:2509.23787v1 Announce Type: cross Abstract: Procedural Content Generation (PCG) techniques enable automatic creation of diverse and complex environments. While PCG facilitates more efficient content creation, ensuring consistently high-quality, industry-standard content remains a significant challenge. In this research, we propose a method to identify and repair unstable levels generated by existing PCG models. We use Angry Birds as a case study, demonstrating our method on game levels produced by established PCG approaches. Our method leverages object segmentation and visual analysis of level images to detect structural gaps and perform targeted repairs. We evaluate multiple object segmentation models and select the most effective one as the basis for our repair pipeline. Experimental results show that our method improves the stability and playability of AI-generated levels. Although our evaluation is specific to Angry Birds, our image-based approach is designed to be applicable to a wide range of 2D games with similar level structures.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

PCG模型 关卡生成 对象分割 Angry Birds 游戏开发
相关文章