cs.AI updates on arXiv.org 09月30日
HieraTok:多尺度ViT tokenizer提升图像重建与生成
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出HieraTok,一种基于多尺度Vision Transformer的tokenizer,通过多尺度下采样和尺度因果注意力机制,在图像重建和生成任务中实现显著提升。

arXiv:2509.23736v1 Announce Type: cross Abstract: In this work, we present HieraTok, a novel multi-scale Vision Transformer (ViT)-based tokenizer that overcomes the inherent limitation of modeling single-scale representations. This is realized through two key designs: (1) multi-scale downsampling applied to the token map generated by the tokenizer encoder, producing a sequence of multi-scale tokens, and (2) a scale-causal attention mechanism that enables the progressive flow of information from low-resolution global semantic features to high-resolution structural details. Coupling these designs, HieraTok achieves significant improvements in both image reconstruction and generation tasks. Under identical settings, the multi-scale visual tokenizer outperforms its single-scale counterpart by a 27.2\% improvement in rFID ($1.47 \rightarrow 1.07$). When integrated into downstream generation frameworks, it achieves a $1.38\times$ faster convergence rate and an 18.9\% boost in gFID ($16.4 \rightarrow 13.3$), which may be attributed to the smoother and more uniformly distributed latent space. Furthermore, by scaling up the tokenizer's training, we demonstrate its potential by a sota rFID of 0.45 and a gFID of 1.82 among ViT tokenizers. To the best of our knowledge, we are the first to introduce multi-scale ViT-based tokenizer in image reconstruction and image generation. We hope our findings and designs advance the ViT-based tokenizers in visual generation tasks.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

HieraTok Vision Transformer 图像重建 图像生成
相关文章