cs.AI updates on arXiv.org 09月30日
AdaPtis:自适应流水线并行提升LLM训练效率
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出AdaPtis,一种支持自适应流水线并行的LLM训练系统,通过联合优化模型分区、模型放置和任务调度策略,有效提升训练效率。

arXiv:2509.23722v1 Announce Type: cross Abstract: Pipeline parallelism is widely used to train large language models (LLMs). However, increasing heterogeneity in model architectures exacerbates pipeline bubbles, thereby reducing training efficiency. Existing approaches overlook the co-optimization of model partition, model placement, and workload scheduling, resulting in limited efficiency improvement or even performance degradation. To respond, we propose AdaPtis, an LLM training system that supports adaptive pipeline parallelism. First, we develop a pipeline performance model to accurately estimate training throughput. Second, AdaPtis jointly optimizes model partition, model placement, and workload scheduling policies guided by this performance model. Third, we design a unified pipeline executor that efficiently supports the execution of diverse pipeline strategies. Extensive experiments show that AdaPtis achieves an average speedup of 1.42x (up to 2.14x) over Megatron-LM I-1F1B across various LLM architectures and scales.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

LLM训练 流水线并行 自适应 模型分区 任务调度
相关文章