cs.AI updates on arXiv.org 09月30日 12:05
MoE模型高效缩放与优化配置研究
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文针对MoE模型在缩放和部署中的挑战,通过系统分解MoE设置,识别影响模型性能的关键因素,构建了全面的MoE缩放定律,并推导出最优配置。

arXiv:2509.23678v1 Announce Type: cross Abstract: Mixture-of-Experts (MoE) models have become the consensus approach for enabling parameter-efficient scaling and cost-effective deployment in large language models. However, existing scaling laws for dense models are inapplicable to MoE models, which stems from three critical challenges: the multiplicity of influencing factors, their intricate coupling relationships and the non-monotonic nature of their performance impacts. They collectively necessitate a fine-grained investigation into MoE-specific scaling laws. In this work, we perform a systematic decomposition of MoE settings, identifying five key factors that influence model performance from both size and structural perspectives (data size ($D$), total model size ($N$), activated model size ($N_a$), number of active experts ($G$) and the ratio of shared experts ($S$)). Specifically, we design $446$ controlled experiments to characterize their marginal effects, ultimately constructing a comprehensive and precise joint MoE scaling law that considers all essential factors. Furthermore, we derive the theoretically optimal and practically efficiency-aware optimal configurations for $G$, $S$ and $N_a/N$ with detailed analyses. Our results demonstrate that the optimal settings for $G$ and $S$ are independent of both the model architecture and data size. With the scaling of $N$, the optimal activation parameter ratio of $N_a/N$ becomes sparser. Our proposed MoE scaling law could function as an accurate and insightful guidance to facilitate future MoE model design and training.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

MoE模型 缩放定律 优化配置 模型性能 大规模语言模型
相关文章