cs.AI updates on arXiv.org 09月30日 12:05
Timber:提升Instruct模型探索能力的新方法
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出了一种名为Timber的无需训练的方法,通过精细调整权重差异,提升Instruct模型的探索能力,同时保持其利用能力,在Llama和Qwen系列实验中显著提升了Pass@k性能。

arXiv:2509.23595v1 Announce Type: cross Abstract: Post-training, which elicits a pretrained Base model into the corresponding Instruct model, is widely considered to be superficial. In this work, we first reinforce this hypothesis by providing novel quantitative evidence from the weight level that the effective rank (eRank) remains negligibly changed. However, this superficiality also suffers a critical trade-off, improving the exploitation capabilities at the cost of limiting its exploration. To tackle this issue, we propose Timber, a simple yet effective training-free method that enhances the exploration capability of the Instruct model while preserving its exploitation. The key insight is to partially revert Instruct towards the paired Base model by subtle yet targeted refinement of the weight deltas. Extensive experiments on Llama and Qwen series demonstrate that Timber consistently improves vanilla Instruct models, particularly on Pass@k performance. Our findings offer new insights into the post-training stage at the weight level and practical strategies to refine the Instruct model without training.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

Instruct模型 探索能力 权重调整 Timber方法 Llama和Qwen
相关文章