cs.AI updates on arXiv.org 09月30日
持续学习模型融合框架
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出一种持续学习模型融合框架,解决模型融合中的规模问题和功能信息丢失问题,通过优化模型参数和利用优化器状态信息,实现高效融合和减少遗忘。

arXiv:2509.23592v1 Announce Type: cross Abstract: We present a holistic framework for continual model merging that intervenes at three critical stages: pre-merging, during merging, and post-merging-to address two fundamental challenges in continual learning. In particular, conventional approaches either maintain a growing list of per-domain task vectors, leading to scalability issues or rely solely on weight-space merging when old data is inaccessible, thereby losing crucial functional information. Our method overcomes these limitations by first fine-tuning the main model within its tangent space on domain-specific data; this linearization amplifies per-task weight disentanglement, effectively mitigating across-task interference. During merging, we leverage functional information from available optimizer states beyond mere parameter averages to avoid the need to revisit old data. Finally, a post-merging correction aligns the representation discrepancy between pre- and post-merged models, reducing bias and enhancing overall performance-all while operating under constant memory constraints without accessing historical data. Extensive experiments on standard class-incremental and domain-incremental benchmarks demonstrate that our approach not only achieves competitive performance but also provides a scalable and efficient solution to the catastrophic forgetting problem.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

持续学习 模型融合 遗忘问题
相关文章