cs.AI updates on arXiv.org 09月30日 12:04
阿拉伯语情感分析:主动学习与LLM应用
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出一种针对阿拉伯语情感分析的主动学习框架,探讨大型语言模型在标注与性能评估中的应用,通过对比不同深度学习架构及标注策略,验证了LLM辅助标注在阿拉伯语情感分析中的有效性。

arXiv:2509.23515v1 Announce Type: cross Abstract: Natural language processing (NLP), particularly sentiment analysis, plays a vital role in areas like marketing, customer service, and social media monitoring by providing insights into user opinions and emotions. However, progress in Arabic sentiment analysis remains limited due to the lack of large, high-quality labeled datasets. While active learning has proven effective in reducing annotation efforts in other languages, few studies have explored it in Arabic sentiment tasks. Likewise, the use of large language models (LLMs) for assisting annotation and comparing their performance to human labeling is still largely unexplored in the Arabic context. In this paper, we propose an active learning framework for Arabic sentiment analysis designed to reduce annotation costs while maintaining high performance. We evaluate multiple deep learning architectures: Specifically, long short-term memory (LSTM), gated recurrent units (GRU), and recurrent neural networks (RNN), across three benchmark datasets: Hunger Station, AJGT, and MASAC, encompassing both modern standard Arabic and dialectal variations. Additionally, two annotation strategies are compared: Human labeling and LLM-assisted labeling. Five LLMs are evaluated as annotators: GPT-4o, Claude 3 Sonnet, Gemini 2.5 Pro, DeepSeek Chat, and LLaMA 3 70B Instruct. For each dataset, the best-performing LLM was used: GPT-4o for Hunger Station, Claude 3 Sonnet for AJGT, and DeepSeek Chat for MASAC. Our results show that LLM-assisted active learning achieves competitive or superior performance compared to human labeling. For example, on the Hunger Station dataset, the LSTM model achieved 93% accuracy with only 450 labeled samples using GPT-4o-generated labels, while on the MASAC dataset, DeepSeek Chat reached 82% accuracy with 650 labeled samples, matching the accuracy obtained through human labeling.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

阿拉伯语情感分析 主动学习 大型语言模型 标注 深度学习
相关文章